Ecologically Intensive Pest Management

Jonathan Lundgren Ecdysis Foundation Blue Dasher Farm

Major Crises Facing the Planet

Climate change

Pollution

Human health

Civil unrest

Declines in biodiversity

Biodiversity is in Decline

Birds

Meehan et al. 2010. PNAS 107: 18533 Mineau and Whiteside. 2013. PLoS ONE 8(2): e57457 Hallmann et al. 2014. Nature 511: 341

Butterflies

Swengel et al. 2011. J Insect Conserv 15: 327 Pleasants and Oberhauser 2013. Insect Conserv Divers 6: 134

Grassland habitats

Wright and Wimberley. 2013. PNAS 110: 4134 Johnston. 2014. Landscape Ecol 29: 81

Wetland habitats

Wright and Wimberley. 2013. PNAS 110: 4134

Insect communities

Landis et al. 2008. PNAS 105: 20552 Hallmann et al 2017. PLoS ONE 12: e0185809

> Butchart et al. 2011. Science 328: 1164 Potts et al. 2010. TREE 25: 345 Frick et al 2010. Science 329: 682 Newton 2004. Ibis 146: 579

Monoculture Production Schemes

The only way to maintain these systems is with agrichemicals.

Agrichemicals are an addiction

Solution to the Problem

Change agriculture

Anything less, and bees will continue to die.

How to Promote Soil Health and Biodiversity

Reduce disturbance (tillage, agrichemicals) Increase diversity (Plants, microbes, animals, revenue streams, etc)

Biodiversity on Farms

Corn 482 species

Welch and Lundgren 2016 Food Webs 9:46

Wheat 103 species (predators)

Choate and Lundgren 2015 Crop Prot 77:110

Cattle Dung 172 species

Pecenka and Lundgren Rangld Ecol Mgmt in press

Diversity and Function

A healthy system needs species

Redundancy is crucial

Tilled cornfields had 24% of species found in prairies

Schmid et al. 2015. Ann Entomol Soc Am 108: 993

Perceptions of Biological Networks

Our understanding of species networks primarily comes from simplified systems

Crowder et al 2010. Nature 466: 109 Finke and Snyder 2008. Science 321: 1488 Tylianakis et al. 2010. Biol Conserv. 143: 2270

But simplified systems ignore the complexity of biological communities and their unforeseen interactions

Community Network in Agroecosystems

Biodiversity on Farms Reduce Pest Pressure in Corn

Lundgren and Fausti 2015. Science Advances 1: e1500558

Network Topology and Pest Abundance

High Pest Abundance

Network Topology Affects Pest Abundance

Fewer linkages between species increases pests

Lundgren and Fausti 2015. Science Advances 1: e1500558

Four Principles

 Stop tilling (or reduce it)
Never leave bare soil
Some plant diversity is better than none, and more is better than less
Integrate crops and livestock

A Better Way to Farm

Best management practices Regional focus Systems level

Claire LaCanne, MSc

Regenerative No insecticides Conventional Insecticides

LaCanne and Lundgren. 2018. PeerJ 6: e4428

Approach

Full bioinventory of corn community

Yields and profit

Pest Populations

Regenerative systems had 10-fold fewer pests than insecticide-treated systems

Yield

Yields were reduced by 22%

Profits

Regenerative systems were twice as profitable

Soil Health and Profit

Field profitability was NOT RELATED TO YIELD

Corn profitability is directly related to particulate organic matter of the soil

California Agriculture

Characterized by Heavy tillage Heavy pesticide use Very little plant diversity in cropland

Is there a better way?

Regenerative Almond Production

Are regenerative almond systems superior to conventional systems?

120 P. 10 20

Tommy Fenster, MSc candidate

Regenerative

No till No pesticides Perennial ground cover Compost Compost teas Livestock integration

Conventional

Tillage Bare soil Multiple pesticide applications annually

Soil Organic Matter (0-15cm)

Soil Bulk Density

P-Value= 0.000

N for conv = 24 N for regen= 25

Water Infiltration Rate

Invertebrate Biomass

Chart of Mean(Invertebrate Biomass(grams))

Pest Populations

Regenerative Systems had Higher:

- 30% higher soil organic matter
- Equivalent pest populations
- Higher soil microbial communities
- 6 times higher water infiltration rates

Study is Ongoing

CTG J2 A Fel

Economics Food borne pathogens Almond quality and nutrition

Problems with Avermectins

Most of the treatment comes out in the dung

Campbell 1985. Science 221: 823

A half-life of 240 days

Herd 1995. Internat J Parasitol 25: 875

Avermectins kill the 98% of insects (non-pests) found in dung

What Causes Pests?

Not enough diversity

Too much disturbance

Effects of Regenerative Ranching on Maggots

How does high intensity grazing, and long rest periods affect pests of cattle?

The Ranches

16 ranches eastern SD

A range of conditions and management practices Regenerative ranches >10 AU per ha Moved within 10 d No avermectins

<u>Conventional ranches</u> <5 AU per ha Moved after 30 d Avermectins twice per year

Intensively surveyed the insect communities in the dung

Insect Community

PERISBARA.

116,000 insects identified to species level

Roughly 400 insects per pat

Pecenka and Lundgren. 2018. PeerJ 6: e5520 Pecenka and Lundgren. 2019. Basic Appl Ecol 40: 19

172 species identified

Insect community

Species diversity was encouraged by regenerative herd management

Pecenka and Lundgren. 2018. PeerJ 6: e5520 Pecenka and Lundgren. 2019. Basic Appl Ecol 40: 19

Predators

Predators in dung were favored by regenerative herd management

Insecticides are an addiction

Pests are not the problem!

Change the system

Combatting Pests Without Pesticides

Abandon pesticides High intensity grazing Frequent movement of animals Integrate herds

Four Principles

 Stop tilling (or reduce it)
Never leave bare soil
Some plant diversity is better than none, and more is better than less
Integrate crops and livestock

Why isn't Regenerative Farming Mainstream?

Paradigm shifts take time

Science has been misdirected

Thanks!

Hundreds of donors

PRODUCERS OF FINE HONEY POLLINATORS OF FINE CROP

U.S. FISH & WILDLIFE SERVICE

Sustainable Agriculture Research & Education

a climate change solutions movie [that doesn't even care if you believe in climate change

A New Way for Science to Help Bee Keepers and Farmers

www.ecdysis.bio

www.bluedasher.farm

Jon.Lundgren@bluedasher.farm

