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Science des données géospatiales

e Expertises:
o Télédétection, SAR, forage des données, apprentissage automatique, traitement d'image,
plateformes, fusion de données

e Intéréts de recherche:
o Applications de I'apprentissage profond en observation de la terre et aux sciences de
I'environnement:
m Recensement faunique
m Agriculture de précision
o Application des réseaux de neurones sur des graphes en géomatique
o  Quantum Machine Learning
o Apprentissage machine basé sur la physique (Physics-informed Machine Learning)

e Infrastructure géospatiale:
o Manipulation des mégadonnées en infonuagique
o Plateforme pour I'annotation des données
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Département de géomatique appliquée

12 professeurs

100+ étudiants aux 3 cycles
https://www.usherbrooke.ca/geomatique/
Trois axes:

o Physique de la téledétection

o Traitement de la données

o Applications thématiques
Thématiques:

o  Agriculture de précision
Milieux nordiques
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Cartographie
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Introduction aux principes géneraux de I'lA
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L’intelligence artificielle : un domaine tres vaste

Intelligence/// Apprentissage \ Apprentissagede | Apprentissage

profond représentations

artificielle machine

Depuis 2012, I'apprentissage profond a révolutionné le domaine UpS Pty

Sherbrooke



L’apprentissage automatique (machine learning)

e Approche traditionnelle : on trouve des regles (exemple : systemes experts)

e Apprentissage automatique : on dérive les regles des données (data driven)
e |’ensemble des regles = un modele

Inférence
. T 7 Donnéesl \‘\\
; T T e Résultats
,/ D —’ \\ ’,” ‘-‘~~ 2
.~ Données ’ \ ’ Reglos . Modeéle —
Algorithme Résultats ‘. ~" Données ) _ L >
Classi — ! { Apprentissage ;
Régles assique / '\ Résultats . Je e
> L Machine
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Les neurones artificiels: une inspiration biologique

impulses carried

toward cell body
branches

of axon

dendrites

nucleus

impulses carried
away from cell body

Lettvin, J.Y., Maturana, H.R., McCulloch, W.S., & Pitts, W.H. ; What the Frog's Eye Tells the Frog's
Brain, (PDF, 14 pages) (1959) ; Proceedings of the IRE, Vol. 47, No. 11, pp. 1940-51.
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Bref historique

Electronic Brain

S. McCulloch - W. Pitts

Multi-layered
XOR Perceptron
ADALINE (Backpropagation)
A A
A
Perceptron
s ORI s, DO AGS LRI ).
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F. Rosenblatt

B. Widrow - M. Hoff

M. Minsky - S. Papert

D. Rumelhart - G. Hinton - R. Wiliams

Deep Neural Network
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« Adjustable Weights
» Weights are not Learned

« Learnable Weights and Threshold

» XOR Problem

https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

« Solution to nonlinearly separable problems
« Big computation, local optima and overfitting * Kernel function: Human Intervention
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La vision par ordinateur :
L’exploitation de la donnée image est un probleme difficile

e Pas juste extraire des couleurs mais aussi Comprendre I'image (semanthue)




Etude du systéme visuel humain

e FEtude du cerveau humain (neuroscience)
e Le systeme visuel est une hiérarchie de couches de neurones

Hiérarchie de réseaux
de neurones - de

représentation
|
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From: Large-Scale Deep Learning for Intelligent Computer Systems, Jeff Dean, WSDM 2016, adapted from o
Untangling invariant object recognition, J DiCarlo et D Cox, 2007 gﬁé‘;%rr%?k%e



Les données sont organisées de maniere hiérarchique

Une information complexe est tres souvent une hiérarchie de blocs élémentaires

e Texte:

o Lettre= mot = phrase => paragraphe = chapitre = histoire =
e Image:

o Pixel ™ Contours = Texture = Motif = Partie = Objet = Scéne =
e Parole:

o Son=>Phonéme=> Morphéme =>

U D Université de
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Développements

récents

Dave Steinkraus;
Patrice Simard; lan
Buck (2005). "Using

| AlphaGo Zero

Transformers

GPUs for Machine -
Al Winter (1987-1993) Learning DeepMind AlphaGo
l Algorithms" 1
CNN outperforms
l Hinton \ Bengio  LeCun | human on ImageNet
DeepFace
X 30 en puissance
de calcul
Backpropagation Convolutional ImageNet Creation
Network 'l' T
handwriting :
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L’lA perceptif : les réseaux a convolutions -
(CNN)

Hoeser, T.; Kuenzer, C. Object Detection and Image Segmentation with Deep Learning on Earth Observation
Data: A Review-Part I: Evolution and Recent Trends. Remote Sens. 2020, 12, 1667.
https://doi.org/10.3390/rs12101667

3x3 kernel

Convolution +
Activation----

Hiérarchie de caractéristiques visuelles
Permet d’encoder une image

Tres proche du systeme visuel humain b)
Dizaines de millions de parametres
Nécessite plusieurs millions d'images
A révolutionné le domaine
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Along the ventral stream the human
brain represents increasingly more
complex visual features. The very Hiérarchie des
same phenomenon emerges in deep .
artificial neural networks gesigned to features visuels
classify visual images: each dans le cerveau
consecutive layer of a deep neural

network codes for more complex et dans les RNA
visual features than the previous layer.
In this study we compare biological
and artificial visual processing
systems.
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L’entrainement d’un modeéle est itératif

Chargement des données Modifications de I'architecture

Modifications du prétraitement Modifications des couches

Optimisation

d’'un modele

Analyse des métriques Modifications des hyperparamétres

Est-ce un meilleur modele? Batch size, learning rate, etc.

Entrainement #N

Université de
Sherbrooke
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La construction du jeu de données est aussi itérative

Nouveau jeu de Expérience #N
données

Entrainement d'un
nouveau modeéle

Itérations sur le
jeu

Collecte de nouvelles données d'entrainement Test- du modéle

Ajout de nouveaux échantillons Performance du modéle

Analyse des erreurs

Fausses alarmes, erreurs

Université de
Sherbrooke
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Ce qu’il faut retenir

e Le réseau de neurone profond est une technique d’apprentissage
automatique qui est un sous-domaine de I'lA (IA perceptif)

e Les réseaux de neurones profonds construisent des regles hiérarchiques a
partir des données (profondeur = hiérarchie)

e Il n’y a pas de raisonnements

e Les données produisent des regles (intelligence des données)

e Demande un grand volume de données annotées

e Certains modeéles pré-entrainés peuvent étre adaptés

e Applications en reconnaissance, classification, détection et régression

U D Université de
Sherbrooke

e Produire des modeles est un processus itératif expérimental
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Exemples de projets en agriculture de
precision
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Détection de la maladie dans la vigne

Diversité dans le feuillage Complexité du diagnostique Diversité des cépages
et de la prise de vue Symptdémes trés variés

Université de
Sherbrooke 20



Détection de la maladie dans
la vigne

e Application de I'apprentissage profond
(classification et segmentation) en
agriculture de précision

e Détection du Mildiou

e Détection de la flavescence dorée
et du Mildiou

® Annotation de plusieurs milliers
d’images

e Adaptation de réseaux pré-entrainés

Boulent, J., Foucher, S., Théau, J., and St-Charles, P.-L. (2019b).
Convolutional neural networks for the automatic identification of plant diseases.
Front. Plant Sci. 10, 941. doi:10.3389/fpls.2019.00941
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Classification des mauvaises herbes

e Reconnaissance des mauvaises herbes a des stades précoces de croissance
e Adaptation de réseaux pré-entrainés

e Techniques d’apprentissage avec peu de données

BBCH 09 BBCH 10 BBCH 11 BBCH 12 BBCH 13 BBCH 14 BBCH 15

Agriculture and Agriculture et Université d
Agri-Food Canada  Agroalimentaire Canada Sherorooke | 22



Caractérisation des bandes riveraines

e Réseaux de neurones + Images tres haute résolution (50 cm)

IQBR en milieu agricole : DCNN multi-vues
(MSc Samuel De La Sablonniere, 2019-2021)

Site d'étude Pléiades 50 cm et IQBR in-situde COVABAR  Méthode traditionnelle (MELCC)

« Application a l'aide d’une
classification 00
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Dépistage du botrytis de d’oignon

Dépistage du botrytis de l'oignons sur des images UHR
(MSc Mathieu St-Laurent, 2019-2021 — AAC et Phytodata)

! For Each Spatial  }
: Location
[7] Objectness H
:LJ Classification ::

Faster RCNN

For Each Rol
MultiClass |
Classification

I:I Bounding Box

Regressor

_ Feature Maps: A senesnsensnasand
}::%me Extract Features F{qag:u:‘ Projected Region Classification
e o Aol Légende

Champ

Nombre de taches de botrytis détectées)
® 16

e 612
12-17
17-23

23-28




Dépistage du puceron de la laitue
Doctorat d’Emma Dubrile (Projet RQRAD, Marc Bélisle)

IA en périphérie pour la détection en
temps réel du puceron de la laitue
PhD Emma Dubriile

Prédictions

Vrais positifs

'YOLO : plusrapide Détection en une étape
Faux négatif

Difficulté a détecter les pucerons
agglomérés

. Puceron
dela Backbone du —Classificatio
laitue réseau (CNNou —» I::::
transformeur) ——Régressio!

') -
Comment * Entrainements
) Performance moyenne de 5 entrainements
Comparaison des performances des modéles YOLO de YOLOVS
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n Université de
Sherbrooke

Yolo en mode « edge computing » : détection
d'objets en temps réel, rapidité et précision



Stades phénologiques du mais et du soya (Agrisoft et Databio)

Reconnaitre les stades phénologiques du mais/soya sur des images de drone

|
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Exemples de stades phénologiques soya !
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Recensement faunique

e Comptage d’animaux sur de
I'imagerie drone ou aéroportée

e Milliers d'image collectées sur des
centaines de km2

e Comptage de troupeaux denses

e Réduction du temps d’analyse par

un facteur 10

Delplanque, et al. (2023). Surveying wildlife and livestock in Uganda with aerial cameras: Deep
Learning reduces the workload of human interpretation by over 70%. Frontiers in Ecology and
Evolution, 11. https://doi.org/10.3389/fevo.2023.1270857



Ressources naturelles
et Fordts 3 1

Carte de la couverture des sols Québec ez e

e Premiére carte d’'occupation des terres du Québec basée sur de I'lA
e 10 m de résolution, 12 classes, 2022-2025
e https://mrnf.gouv.qc.ca/repertoire-geo '



https://mrnf.gouv.qc.ca/repertoire-geographique/occupation-terres/
https://mrnf.gouv.qc.ca/repertoire-geographique/occupation-terres/
https://mrnf.gouv.qc.ca/repertoire-geographique/occupation-terres/
https://mrnf.gouv.qc.ca/repertoire-geographique/occupation-terres/
https://mrnf.gouv.qc.ca/repertoire-geographique/occupation-terres/
https://mrnf.gouv.qc.ca/repertoire-geographique/occupation-terres/
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Perspectives et tendances
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Toujours plus de calculs... plus d’intelligence?

4 Mise a I'échelle
du raisonnement

Mise a I'échelle
de la génération

Intelligence

Mise a I'échelle
des jeux de données

Ex.: LLM Ex.: robotique

— |A Perceptif —— |A Génératif — |A Agentique — |IA Physique

12012 12019 2022 2023
Tiré de NVIDIA GTC Keynote 2025 Sherbrooke



Approches génératives

e Une deuxiéme révolution (depuis 2019)

e Les |IA génératives s’auto-entrainent a générer la donnée d’entrée:
o Images : DALL-E (open Al)
o Texte : ChatGPT
o Vidéos : SORA (Open Al)
o Voix
o Le geste
o Multimodal : vidéo + texte + image + voix + ...
e Tres gros modeles (plusieurs milliards de paramétres!)
e Ces modéles capturent la structure du langage mais pas forcément le sens

e (Générent toujours un résultats (bon ou mauvais!)

U D Université de
Sherbrooke



Exemples d’approche générative en super-résolution

|A génératif

Amélioration de la
résolution d’'un facteur 4 a 8
On passe de 10 metres a
1,25 metres!

On génere les pixels
manquants




Les modeles de langues (LLM)

e Modéles dits fondationnels : entrainement sur tout ce qui a été écrit! > 10s de TB de
documents texte ... de bonne qualité

e Ces modéles sont entrainés a prédire le prochain mot dans une phrase

e Entrainement sur l'internet au complet + plusieurs librairies (plusieurs millions d’ouvrage!)

e Investissement de plusieurs centaines de millions de dollars!

Conversations ou Questions/Réponses
Annotations humaine ou reinforcement learning
+ adaptation a notre besoin
Post-entrainement

Auto-supervisé, pas de vérité terrain + “Affinage” Rétroaction
Pré-entrainement Classifieur ] Humaine

: Un RNA séparé <:> ®
[ Auto-Entrainement ]—»[ Modele -

fondationnel
Assistant ]_. ChatGPT, etc.

Personnel

LLM : en train de changer la donne en |IA - pré-entrainés sur de
trés larges datasets ("tout I'Internet"; il suffit de "peu" de données N
(milliers) ou de régles en langage humain pour les finetuner Sherbrooke 33



Explosions de
modeles!

e Course a la taille:
* Milliards de paramétres
® Trillion!

® Tres coldteux en
infrastructure

e Compétition et
investissements >
plus grande BDs
d’entrainement (pré et
post); plus longue
séquence (nb de tokens);
précision la plus élevée
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Explosions de modeles!

 Architecture de base : Transformers (milliards de paramétres; ¢a reste un réseau de neurones profond)

 GPT = Generative Pretrained Transformer
» Pour entrainer: des mois, des K GPU et des M$

Output
Probabilities

Architecture qui rappelle les
RNN et les LSTM (1D-CNN)

Add & Norm
Multi-Head
Attention
Nx
Nx Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
T 7 t
O J . — )
Positional o) @ Positional
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Spécialisation des modeles de langues (LLM)

Sélectionne une

e Ces modéles peuvent étre spécialisés avec vos données réponse

Post-entrainement

Pré-entrainement Classifieur ] e e
Spécialisation

[ Auto-Entrainement ]—{ Moqele ,l:

\

Modeéle avec
raisonnement

Recherche sur
Internet

Agents

ChatBot Spécialisé

Modeéle multimodal

fondationnel Question-
Assistant Reponse |
Personnel r
TmMal 28T :
TR 1..[ ;
[:m Nos données

documents (nos

Librairie spécialisée projets)

RAGs

Contraindre de prendre
la réponse dans nos

U D Université de
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La génération augmentée de récupeération (RAG)

e Permet au modéle de se concentrer uniquement sur les données fournies
e Donne un contexte aux questions et réponses B
e Limite les erreurs (hallucinations) i
i ; d'informations —_—
e Données texte, base de données, etc. pertinentes Sources externes
o Question -
@
Vos données
e , ©
question utilisateur ﬁ
e Réponse finale
prompt
o question
+ 37
contexte

LILM



Modeéles avec “raisonnement”

Chaine de pensée: forcer un raisonnement par rapport a la réponse du modéle en inférence

e Certains modeles semblent étre capables de raisonner

e Précurseurs de I'Intelligence Artificielle Générale (AGI) ?

e Encore trés controversés (mémorisation versus raisonnement)

e Les nouveaux modéles : ChatGPT-o01, DeepSeek-R1, ChatGPT 5.1, Gemini 3
“raisonnent” en boucle (test time inference)

e Plus adaptés pour des problemes complexes (décomposition en étapes)

e Plus colteux a l'utilisation a cause des itérations

U D Université de
Sherbrooke



Modeles avec “raisonnement”

e Le modele semble “réfléchir” avant de donner une réponse

ChatBot traditionnel ChatBot avec raisonnement

Systeme 1 vs 2 : théorie en
psychologie (Daniel Kahneman)

1
1
|
; | Q 1i Meilleure précision dans
[ Question ] 1 [ uestion ] la résolution de probléme.
I
Prompt : Prompt
I
v 1 \ 4
Systeme 1: : N LLM avec
repondre LLM | | raisonnement
sans réfléchir I A I |
(en mémoire) 1 Chaine 1 Svsteme 2 | g
I I c . ysteme 2: le modéle
; I de ) I Réflexion 1 )« réfléchit » a la question.
Réponse I pensees | | On lui laisse le temps de
: : R 'fl . 2 recherche et d’optimisation,
. I efiexion la priorité étant la précision.
I I v
| I
I
I
I
I
1
1

Réponse .
(piversd



Les agents conversationnels * Probleme complexe - divisé en

U _ taches avec spécialisation
¢ n agent . * On parle d’approche agentique

O un modéle de langue (LLM)

O + une série d’outils exécutant diverses taches, avec une spécialisation (recherche
sur internet, base de données, ...)

O + une interface texte avec l'utilisateur

1 agent = 1 tache 1. Perception

L'agent observe son environnement
(texte, images, données).

Feedback
3. Action 2. Planification
Il exécute les étapes en utilisant des Il décompose un objectif en
outils (APIs, code, navigation web). étapes et sélectionne des outils.

Université de
Sherbrooke 40



Approches Agentiques

Voir le projet RQRAD

e Un agent = un modele de langue (LLM) de Ramata Magagi

e Plusieurs agents peuvent interagir
e Exemple en médecine (Med-Gemini)

Orchestrateur Intelligent

Probléeme $
Complexe

Agent Chercheur

*Role : Collecte de données
via des APl et bases de
connaissances.

- )

i

Agent Analyste Agent Qualité
*Role : Synthese et *Role : Vérification et
raisonnement sur les critique des conclusions

données collectées. intermédiaires.

Université de
Sherbrooke 41



Emergence de petits modéles

Les petits modéles peuvent étre aussi performants que les plus gros
Ces modéles peuvent fonctionner localement
Ces modeles peuvent étre embarqués sur des nano ordinateurs ou des drones
Egalement des modéles multimodaux
Exemple: Moondream
o 0,5-1.0GB
Texte + Image
o Taches de détection d’objet,
description d'image

(~) MOONDREAM

UD Université de
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Jumeaux numeériques

Modélisation compléte (virtuelle) de I'exploitation ... pour entrainer un modéle
Générer un nombre important de données synthétiques

La donnée est déja annotée par construction
Important pour I'lA physique v
Applications:

o Veéhicules autonomes
o Robotique

e Exemple: TomatoSynth

Université de
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Technologies Lab, Wageningen University, 2024, https.//qgithub.com/SCT-lab/TomatoSynth

Corné Talen, Juriaan Wolfers, William Hurst, Gert Kootstra, TomatoSynth V1.1, Social Creative


https://github.com/SCT-lab/TomatoSynth
https://github.com/SCT-lab/TomatoSynth
https://github.com/SCT-lab/TomatoSynth

Joint Embeding Predicting Architecture (JEPA)

World model / modele du monde

Proposée par LeCun (>800 articles déja)

Le futur de I’'lA (?)

Princpe :
e Connaitre le “Monde” au temps t , t-1, t-2, ..., t-n
® Prédire le “Monde” au temps t+1, t+2, ...

e On peut donc planifier une séquence d’actions pour arriver a un objectif

particulier

® Dans notre cas, des pratiques agricoles pour atteindre un but éconimique et écologique ...

Ajout d’'un « prior » : connaissance a priori du monde (la physique du monde
courant) issue du bon sens, ce que les LLM n’ont pas et peuvent donc fabuler

U D Université de
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Spatial Intelligence

e 3D World model (ou 4D avec t)-> focus sur la vision
(vs LLMs qui sont des 1D-CNN)

e Proposé par Fei-Fei Li, initiatrice d’'ImageNet (2009)

e Le monde qu’on voit est plus compliqué que le langage
—> probléme de perception (sensing ...) et non de
genération

e Adapté a la robotique, la conduite autonome, ...

e Autre futur de I'lA (?)

Sherbrooke 45



Ce qu’il faut retenir

Les approches génératives utilisent des gros modeles pré-entrainés
Les modéles integrent des modalités multiples (images, texte, code, etc.)

A Les modéles de langue ne font pas vraiment de raisonnement mais peuvent donner
I'apparence d’en faire

A. Ne pas utiliser ces modéles comme une base de connaissance
A, Les modéles génératifs hallucinent facilement (10-20%) et vont toujours générer une réponse

Les approches agentiques ont la possibilité de faciliter I’'exploitation des données complexes

U D Université de
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Partie IV

Applications de ces nouveaux modeles en
agriculture de précision : RQRAD-UdeS
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Projet RQRAD UdeS Ramata Magagi — Samuel Foucher — Mickaél Germain

Inspiration : I'aide a la décision en médecine

Le systéme est capable de combiner des expertises contradictoires pour converger vers la conclusion la
plus probable, imitant ainsi un raisonnement clinique avancé - nécessité d'une intelligence collective

&

Pathologiste

& Nos analyses

Radiologue = Suggérent une fibrose.
!

&,

Modérateur IA

/\
@ ™)

Bien que l'expertise du

pathologiste soit notée, les TN @

arguments en faveur de it
x Les caractéristiques 'hémorragie sont plus ecision
Endocrinologue macr%scotp;questag S Pnaineants.
correspondent davantage B
a une hémorragie, une & La décision finale est
complication bien connue. ~— (C) hémorragie.
Chirurgien \_ 7,
/
Image médicale du cas
(PMC-VQA)
Oncologue

—
Source: C. Park, et al. "MDAgents: An Adaptive Collaboration of LLMs for Medical Decision-Making." NeurlPS, 2024. Sherbrooke | 48



Projet RQRAD UdeS Ramata Magagi — Samuel Foucher — Mickaél Germain

P L\ Conseillers
T )6 Agricoles
\ 4 \ 4

? @ Interface ChatBot
[ ]
A

Y

Agriculture 5.0

Producteurs

Agent
Modérateur

> <
e > Py Equipe
Y& Multi-Agents
‘Agronomie’ ‘Sol' SpéCiaIiStes
‘Ravageurs’
L 1
' o @3 &
@ o 4{"1 @
. ()
Historique des Meilleures Pratiques Modeéles Données de Prévisions
Parcelles Agricoles Prédictifs Télédétection Capteurs (loT) Climatiques
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Projet RQRAD UdeS Ramata Magagi — Samuel Foucher — Mickaél Germain

Agriculture 5.0 Un peu plus concrétement

LES ENTREES LE MOTEUR LES SORTIES

Systéme d’Aide a la

Télédétecti g
\;%:% Rsaetecton \ Décision (SAD)
S NN Infrastructure Numérique
aﬂ’—” Climat — Intelligente (INI)
I
7, _;ﬁ) SOIS % ] | I
= O &
Cultures N \ - i ~
Modeles Modeles Phyto-
) hydrologiques d'lA protection
Q Données / Outil optimisé pour réduire et mieux
=7 historiques cibler I'utilisation des pesticides.
LEes  &futures Recommandations intelligentes.
P

LA FONDATION %& Transfert des connaissances et adoption par les utilisateurs. 50



Systéme d’aide a la décision

1 Infrastructure Numérique
ol Intelligente (INI)

RQRAD

2 Caractérisation des conditions
—;[ Magagi et al.

agroenvironnementales

/

|
| Teélédétection > Modeles |
A . .~ | hydrologiques | .

. Données Données Données S ‘ ! - e

% historiques| | actuelles futures i \ 40\ :
= TR - : A : ’ o/ . - 3 \ - 1o ol /
f" ~ b & e \ . v ¥ N Wers bs meulia da boe) -

[ Biomasse, teneur en eau, ] [ Profils verticaux de température ]
| Climat |

phénologie des cultures, ... et d’humidité du sol

4

Développement d’un 3 Modélisation des ennemis des grandes cultures ]
5 Transfert des connaissances et Systéme d’Aide 4 la Décision (SAD)
adoption des outils par les I

utilisateurs : I | Amélioration des modeles Adaptation, validation et
et S Outil optimisé pour Modéles de en intégrant I’TA et les généralisation des modéles

= t 1 collaboration axeele s\' o réduire et mieux recommandation | \@bservations multisources

ets L érie de ST T gere e . ) 2 S w7 '

Cl.lAAQ, les conseillers cibler1 utl.h.satlon intelligents ; i S5,

agricoles, les producteurs, des pesticides LT
ot les chercheurs, ... A :

/ D \ S . 2\
- : . \ ,
\<:> = \ 2 1 & N

[ Session de formation ]

Effets potentiels
des changements
climatiques sur les|
prédictions

Basés sur les
modeles prédictifs
et les données
multi-sources

/

Offert aux producteurs,
conseillers, agronomes

[ Sclérotiniose du soya et ]

Chénopode blanc (CHEAL)




Projet RQRAD UdeS Y. Bouroubi - M. Leduc - S. Foucher — M.-O. Gasser — M.-E. Samson

Matiére organique des sols : potentiel et meilleures pratiques a I’échelle de la parcelle

Lecture de PAD par |IA
: Maxime Leduc s’est

occupé de ce volet

@,

0 v
H H
LS _

/@\

I\

Module 1 : acquisition
et structuration des

données (PAEF, I'IRDA)

v

Module 2 : intégration
des données de sol et
analyse en fonction de

‘-
\ 7/

v
I’hétérogénéité spatiale ||

Module 3 : identification
du potentiel de MO du
sol par approche MIML

Module 4 : identification
des pratiques pour
augmenter la MO par

approche MIML

7/ A

v

T~

| Module 5: plateforme web,

y A
ollaborative : systéme d’aide a la décisi

on et de collecte des dw productél\ |

< -

| Module 6: transfert, diffusion, rayonnement

/

Spatialisation de la MOS a partir de la

texture, la topographie, les images

Sentinel-2, la météo : doctorant dirigé

par Slava Adamchuk - 3 articles,

méthodes basées sur les RNA

\kg

Simulations DNDC + IA pour
répondre aux 2 questions

latten Layer Fusy Connectes  Fully Connacted Output iayer
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Projet RQRAD UdeS Y. Bouroubi - M. Leduc - S. Foucher — M.-O. Gasser — M.-E. Samson

Matiere organique des sols : potentiel et meilleures pratiques a I’échelle de la parcelle

Simulations DNDC + IA - potentiel
de MOS et pratiques agricoles

é’ scenarios_virtual
’

Variables

Agricultural Practices -
. Mono-culture vs. Diversified Crap

Sonrt I Cropping Soil Organic

::.I:i:i n Sampling Pla:_:::lm system Simulation Matter . .
_ Tillage vs. NoTill = i
T scenarios Evolution Simulation data

Biomass

]
u} i
Pedo-Climatic Conditions i
A = -8 —

- . o N
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Projet RQRAD UdeS Y. Bouroubi - M. Leduc - S. Foucher — M.-O. Gasser — M.-E. Samson

Matiére organique des sols : potentiel et meilleures pratiques a I’échelle de la parcelle

id_site latitude sand_perc clay perc bulk_density ph soc drain_depth drain_spacing ghg_scenario ... inter_crop_3 inter_crop_4 inter_crop_5 is_resi
. . . scenario_id
S|mU|at|OnS DNDC + lA 9 pOtentlel 3 1 4541 19.19 46.07 135 7.0 0069 10 10.0 opds ... NaN  Cover_crop NaN
de MOS et pratiques agriCOIGS 4 3 4830 44.93 2121 120 7.0 00348 10 10.0 cpds ... NaN NaN NaN
7 10 4636 16.27 2438 135 60 00348 10 10.0 rcp45 ..  Cover_crop NaN NaN
9 10 46.36 16.27 24.38 1.35 6.0 00058 10 100 L ropss NaN NaN NaN
13 4 4750 7351 976 135 7.0 00348 10 10.0 cpd5 ... NaN NaN NaN
16 5 4566 628 69.85 150 7.0 00522 10 10.0 ropd5s .. NaN NaN  Cover_crop
18 1 4844 19.19 46.07 135 60 00522 10 10.0 p45 ..  Cover_crop NaN  Cover_crop

soc [N 2 6 4513 4493 21.21 120 50 00348 10 100 cpa5 . NaN NaN NaN
main_crop_s [ MM 2% 10 463 7350 976 150 50 0069 10 100 5 . NaN NaN NaN
is_titlage | 27 6 4513 16.27 2438 120 60 00522 10 100 rpd5 ..  Covercrop Annual_grass NaN
main_crop_1 _ 10 rows x 53 columns.
bulk_density _
clay_perc _
is_residues_left _
flx)

main_crop_4 - " - :
S — Machine Learning model caure iy = main crop 1
S — (RF, XG-Boost, ExtraTrees) e = man_crop_5

inter_crop_4 -
21 = apps_organic_5

inter_crop_3 - —
1 = is_tillage -0.03
main_crop_2 - -
sand_perc . “orn = main_crop_2
catch_crop_1 [l [ is_residues_left
XG-Boost (best prediction model)
apps_mineral_s [l 1+~ apps_organic_2

catch.crop_+ [l Metrics R2 RMSE MAE Cover_crop ~ inter_crop.5

inter_crop_5 .
Beans = main_crop_3

main_crop_3 [l 0 0 71 1 5 0’2695 0, 1 91 0 18 other features -0 2 .

apps_organic_4 .

T 3
0.000 0.025 0.050 0.075 0.100 0125 0.150 0175 —=0.05 0.00 0.05 0.10 0.15
mean(|SHAP value|) (average impact on model output magnitude) ETAX)] = —0.003



Projet RQRAD UdeS Y. Bouroubi - M. Leduc - S. Foucher — M.-O. Gasser — M.-E. Samson

Matiére organique des sols : potentiel et meilleures pratiques a I’échelle de la parcelle

Simulations DNDC + IA - potentiel de MOS et pratiques agricoles

LLM - servira a lire les

The LLM provides feature
embeddings that serve as extracted
features for classical regression
models like RF and XGBoost

données et a répondre
aux 2 questions

Tang, E., Yang, B., & Song, X. (2024). Understanding lim
embeddings for regression. arXiv preprint arXiv:2411.14708.

The input dataset can include any
structured file format such as :
Axt, .json, .ndjson, or Markdown.

Fine-tuning adapts the LLM to a specific
task by training it on domain-relevant data,
allowing the model to produce more
specialized and accurate prediction.

LARGE LANGUAGE MODEL

Song, X., Li, O., Lee, C., Yang, B., Peng, D., Perel, S., &
Chen, Y. (2024). Omnipred: Language models as universal
regressors. arXiv preprint arXiv:2402.14547.
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