Potential Strategies for Thinning Apples without Carbaryl

John Cline
University of Guelph, Simcoe
Horticultural Experiment Station, Simcoe
14 ha of research orchards
Research focus: rootstocks, tree physiology, irrigation, soil management, nutrition, fruit quality, hard cider
Thinning is a common practice that improves fruit quality and ensures return bloom.

- Small fruit
- Damage to tree limbs
- Biennial bearing

† Resources for fruit
† Economic value
† Harvest efficiency

Over-cropping: 5 fruit cluster

Hand thinning = labour-intensive

(McArtney et al., 1996; Link, 2000; Dennis, 2000)
Factors Affecting Fruitlet Thinning
- After Williams and Edgerton, 1981

Cultural – cultivar, tree age, spur type

Chemical – product, concentration, uptake, surfactant

Tree Physiology – health, tree age, previous crop, biennial bearing, stress level, fruit cuticle

Weather – solar radiation, air temperatures (day/night),
Hand Thinning – Least Desirable

- Least effective on return bloom and final fruit size at harvest
- Labour is costly
What is the impetus for developing better thinning methods

- Thinning apple requires ~40 hrs/acre labour
- Hand thinning is done ~45 DAFB, resulting in an enormous ‘waste’ in photosynthetic energy
- Harvest efficiency – proportional to number of fruit per tree

Ontario minimum wage (1965-2018)

Source: Gov’t Canada
Natural Fruit Abscission

- June drop

Plant Bioregulators

- Plant bioregulators, influence plant metabolism, augment fruitlet thinning, cultivar-specific
- Registered: Carbaryl, cytokinin, auxin
- Not registered (alternatives): Ethylene precursor (ACC), abscisic acid, ethephon

Challenges

- Carbaryl no longer used in Europe
- Greater restrictions placed on Carbaryl in Canada
- Thinning window = Petal fall to 15 mm
• 1-2 applications per season
• 10-14 day re-entry for hand thinning
• Apply between late petal fall (after bees have been removed) to 25 days later

Sevin XLR Label

Revised Restricted-Entry Intervals (REIs)

<table>
<thead>
<tr>
<th>Crop</th>
<th>Activity</th>
<th>REI (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>apples (orchards that have transitioned to high density trellis production)</td>
<td>Hand harvest</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Hand thinning, hand-line irrigation</td>
<td>14</td>
</tr>
<tr>
<td>Max. application rate: 1.5 kg a.i./ha (chemical thinning application)</td>
<td>Hand pruning, scouting, pinching, tying, training</td>
<td>4</td>
</tr>
<tr>
<td>apples (orchards that have not transitioned to high density trellis production)</td>
<td>Hand harvest</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Hand thinning, hand-line irrigation</td>
<td>10</td>
</tr>
<tr>
<td>Max. application rate: 1.0 kg a.i./ha (chemical thinning application)</td>
<td>Hand pruning, scouting, pinching, tying, training</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Timing

✓ NAD - Amidthin (King Bloom petal fall)

✓ 6-BA 8 to 12 mm

✓ Carbaryl (Sevin XLR) – late petal fall to 25 days after full bloom.

✓ NAA - Bloom to 12 mm

(later applications tend to reduce fruit size)
Table 1. Primary apple fruitlet thinners used for apples in Canada and their associated rates and estimated costs.

<table>
<thead>
<tr>
<th>Product</th>
<th>Active Ingredient</th>
<th>Units</th>
<th>Typical</th>
<th>PBR cost (cents/lb) apple produced (based on 30 bins/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruitone N</td>
<td>NAA</td>
<td>mg/L</td>
<td>10</td>
<td>$ 0.35</td>
</tr>
<tr>
<td>Fruitone L</td>
<td>NAA</td>
<td>mg/L</td>
<td>312</td>
<td>$ 0.35</td>
</tr>
<tr>
<td>Maxcel</td>
<td>6-BA</td>
<td>mg/L</td>
<td>100</td>
<td>$ 2.18</td>
</tr>
<tr>
<td>Cilis Plus</td>
<td>6-BA</td>
<td>mg/L</td>
<td>100</td>
<td>$ 2.18</td>
</tr>
<tr>
<td>Sevin XLR Plus</td>
<td>Carbaryl</td>
<td>Litre</td>
<td>1.0</td>
<td>$ 0.07</td>
</tr>
<tr>
<td>Sylgard 309</td>
<td>Siloxylated Polyether</td>
<td>% (v/v)</td>
<td>0.05%</td>
<td>$ 0.04</td>
</tr>
<tr>
<td>Agral 90</td>
<td>Nonylphenoxy polyethoxy ethanol</td>
<td>% (v/v)</td>
<td>0.05%</td>
<td>$ 0.03</td>
</tr>
</tbody>
</table>

1 - based on 1000 Litres of water per hectare (Tree row volume) University of Guelph
2 - based on 2010 grower price
3 - assuming 30 bins/acre (22,660 lbs/acre)
• Greater restrictions have been placed on Carbaryl.
• Fruitlet are most responsive the thinners when applied between 8-15 mm in diameter.
• Later fruitlet chemical thinning ‐ it would be beneficial if the thinning window were expanded beyond 15 mm to the 20-25 mm diameter stage.
• Fruit drop response takes 7+ days.
• Often, repeat sprays of 6-BA, carbaryl, or NAA following initial spraying is desired, but the effect of these second sprays are unpredictable with concern about over-thinning.
Objectives:

- Investigation of new fruitlet thinners s-ABA and 1-ACC
- Use NAA and 6-BA alone or in combination
Experiment 1: Materials and methods (2015-2106)

Eleven Treatments

Unthinned control

Hand thinned control (1 frt/spur, spaced 15-20 cm)

Carbaryl + 6-BA (standard)

75 mg/L 6-BA (Cytokinin) + *Auxin

75 mg/L -6-BA + *Abscisic acid

*Ethylene precursor (ACC)

*Chemical Thinners

Carbaryl = 1-naphthyl methylcarbamate (Sevin XLR Plus) 1000 mg/L

Cytokinin = 6-benzyladenine (6-BA) (Maxcel, Cilis Plus) 75 mg/L

Auxin = Naphthaleneacetic acid (Fruitone - NAA) 5, 10, 15 mg/L

Ethylene precursor = 1-aminocyclopropane-1-carboxylic acid (ACC) 5,10, 15 mg/L

Low, med, high ABA,ACC) = 150, 300, 450 mg/L
Materials and methods: Guard trees and a randomized complete block design

Experimental Design

• ‘Gala’
• Guard trees, replications in RCBD
• 2014 (9 mm): Simcoe Research Station
• 2015 (17 mm): Blenheim
Materials and methods: Efficacy of treatments, negative effects, and fruit quality

Thinning Efficacy
- Fruit set - before and after
- Crop load
- Yield
- Return bloom

Treatment Effects
- Phytotoxicity
- ‘Pygmy’ fruit

Quality at Harvest
- Firmness
- Appearance
- Taste
Results: Cytokinin + abscisic acid, and ethylene precursor promote thinning

2014 at 9 mm

Fruit Set
Effective: Cytokinin + auxin, cytokinin + abscisic acid

2015 at 17 mm

Fruit Set
‘Pygmy’ fruit: Cytokinin + auxin
Effective: Cytokinin + abscisic acid, ethylene precursor

Percentage of fruit retained on tree relative to initial fruit count
Results 2015: Some treatments matched the crop load of the carbaryl control

Harvest 2015:

Crop Load (Figure)
- Low and med rates of cytokinin + abscisic acid effective
- Low rate of ethylene precursor was effective
- Crop loads were naturally low both years

Yield
- High concentrations = low marketable

Quality
- Similar to carbaryl control
- Similar return bloom as control
Discussion: Cytokinin + abscisic acid and ethylene precursor consistent with previous research

Chemical Thinners

- Consistent
- Pygmy fruit = inconsistent, previous reports minor incidence in ‘Gala’

Concentration

- High over thinning = inconsistent, no over thinning ‘Golden Delicious’

Quality

- Consistent = No direct effects of chemical thinners

Differences between Years

1. Stage of development
2. Weather and cultural differences

(Bukovac et al., 2008; McArtney and Obermiller, 2012; Robinson, 2006; Schupp et al., 2012; Wertheim, 2000; Westwood and Batjer, 1958)
Conclusions: Cytokinin + abscisic acid and ethylene precursor are alternatives to carbaryl

Commercially Acceptable

• i. Low rates of cytokinin (6-BA) + abscisic acid
 ii. ethylene precursor (1-ACC) at (17 mm)

• Interpret with caution - naturally low crop load both years

• ABA and 1-ACC may be alternatives for fruitlet thinning ‘Gala’ if carbaryl is withdrawn from registration

Further Investigation is required

• Response of other cultivars to 1-ACC and s-ABA

• Reliability/consistency

• Research in the photosynthetic inhibitor metamitron (Brevis®)

(Wertheim, 2000; Westwood and Batjer, 1958)
Blossom thinning – is a (less preferred) option

Effective, but…

• None selective

• Requires a uniform, narrow hedge-row canopy to reach flowers

• Can spread fireblight

• Greater risk of frost injury compared with fruitlet thinning
Research Objectives:

- Investigate the pattern of fruitlet drop/abscission
- Determine the optimal concentration of plant bioregulators for thinning "Gala" fruitlets during the fruit set period (9 and 17 mm fruitlet diameter)
- How is thinning affected by a second spray of chemical thinner?
- What thinners work best?
- What was the final crop load, yield and fruit size response?
Experiment 2: Materials and methods (2013-2014)

- 12-yr old Gala trees on Bud.9 rootstocks
- 11 treatments, 6 single tree reps
- Randomized complete block design
- Commercial airblast sprayer – 800 L/ha TRV 1X
- Guard trees between treatment trees

Treatments

<table>
<thead>
<tr>
<th>May 31 2013 1st Spray (8 mm)</th>
<th>June 7 2013 2nd Spray (+ 7 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Unthinned control</td>
<td></td>
</tr>
<tr>
<td>2 Hand Thinned at June Drop</td>
<td></td>
</tr>
<tr>
<td>3 Carbaryl (1000 mg/L)</td>
<td>6-BA (75 mg/L)</td>
</tr>
<tr>
<td>4 Carbaryl (1000 mg/L)</td>
<td>Carbaryl (1000 mg/L)</td>
</tr>
<tr>
<td>5 Carbaryl (1000 mg/L)</td>
<td></td>
</tr>
<tr>
<td>6 6-BA (100 mg/L)</td>
<td>6-BA (75 mg/L)</td>
</tr>
<tr>
<td>7 6-BA (100 mg/L)</td>
<td>Carbaryl (1000 mg/L)</td>
</tr>
<tr>
<td>8 6-BA (100 mg/L)</td>
<td></td>
</tr>
<tr>
<td>9 6-BA (100 mg/L) + Carbaryl (1000 mg/L)</td>
<td></td>
</tr>
<tr>
<td>10 6-BA (100 mg/L) + Carbaryl (1000 mg/L)</td>
<td>6-BA (75 mg/L)</td>
</tr>
<tr>
<td>11 6-BA (100 mg/L) + Carbaryl (1000 mg/L)</td>
<td>Carbaryl (1000 mg/L)</td>
</tr>
</tbody>
</table>
Effect of one or two applications of carbaryl (CB) and 6-benzyladenine (6-BA) applied alone or tank mixed in 2014 on cumulative fruitlet drop. The first application occurred on 4 June and the second application occurred on 12 June.
Experiment 2: Materials and methods (2013-2014)

Fruit set (2013-2014)
Crop load (2013-2014)

Crop load (no. fruit/TCSA)
Fruit weight (2013-2014)
Yield (2013-2014)

Total fruit yield (kg/tree)
Summary

- 12-14 days was required from the time of 1st spray for thinners to initiate fruit drop
- Single application of thinners applied at 8 mm advanced fruit drop
- A tank mix of 6-BA and Carbaryl applied ~8 mm followed by Carbaryl 14-15 mm was the most effective thinning treatment
- 6-BA applied at 8-9 mm followed by Carbaryl at 14-15 mm was also very effective
- When 6-BA was applied as a second spray, it was not effective in promoting fruit drop
- Combination sprays of 6-BA and Carbaryl, tank mixed or applied separately, were more effective than repeat sprays of the same product
Acknowledgements

Graduate Student
Michelle Cortens

Orchardists
Don Thompson

Technical Support
Amanda Gunter
Cathy Bakker